Stable decompositions and rigidity for products of countable equivalence relations

نویسندگان

چکیده

We show that the “stabilization” of any countable ergodic probability measure preserving (p.m.p.) equivalence relation which is not Schmidt, i.e. admits no central sequences in its full group, always gives rise to a stable with unique decomposition, providing first non-strongly such examples. In proof, we moreover establish new local characterization Schmidt property. also prove some structural results for product relations and orbit diagonal actions.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Countable Borel Equivalence Relations

This paper is a contribution to a new direction in descriptive set theory that is being extensively pursued over the last decade or so. It deals with the development of the theory of definable actions of Polish groups, the structure and classification of their orbit spaces, and the closely related study of definable equivalence relations. This study is motivated by basic foundational questions,...

متن کامل

Popa Superrigidity and countable Borel equivalence relations

We present some applications of Popa’s Superrigidity Theorem to the theory of countable Borel equivalence relations. In particular, we show that the universal countable Borel equivalence relation E∞ is not essentially free.

متن کامل

Recursion Theory and Countable Borel Equivalence Relations

Recursion theory and countable Borel equivalence relations

متن کامل

Forcing Constructions and Countable Borel Equivalence Relations

We prove a number of results about countable Borel equivalence relations with forcing constructions and arguments. These results reveal hidden regularity properties of Borel complete sections on certain orbits. As consequences they imply the nonexistence of Borel complete sections with certain

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2022

ISSN: ['2330-0000']

DOI: https://doi.org/10.1090/tran/8800